Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts.

نویسندگان

  • Chau-Zen Wang
  • Gwo-Jaw Wang
  • Mei-Ling Ho
  • Yan-Hsiung Wang
  • Ming-Long Yeh
  • Chia-Hsin Chen
چکیده

Whole body vibration training is widely used in rehabilitation and sports activities to improve muscle strength, balance, and flexibility. However, the molecular mechanisms of vertical vibration (VV) training and their effect on the myogenesis of myoblasts remain undefined. This study was undertaken to address the hypothesis that VV can enhance the expression of ECM proteins and myogenic regulatory factors (MRFs) in myoblasts and, in turn, increase myotube formation. Using real-time PCR, Western blot analysis, and immunofluorescence studies, we examined the effect of VV treatment with frequencies of 5, 8, or 10 Hz on the expression of ECM proteins and MRFs as well as myotube formation in C2C12 myoblasts. We showed that VV stimulation is safe and effective at stimulating myogenesis in C2C12 myoblasts. The levels of expression of the ECM proteins type I collagen and decorin were the highest after VV treatment at frequencies of 8 and 10 Hz. Expression of the MRFs MyoD and myogenin increased after VV stimulation in a time- and dose-dependent manner. The total number of myotubes formed, as well as the length and the average area of myotubes, were substantially increased following VV treatment at frequencies of 8 to 10 Hz. In conclusion, VV treatment at frequencies of 8 to 10 Hz can stimulate the expression of ECM proteins and MRFs in myoblasts and, in turn, increase myotube formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lactoferrin promotes murine C2C12 myoblast proliferation and differentiation and myotube hypertrophy

Lactoferrin (Lf) is a multifunctional glycoprotein, which promotes the proliferation of murine C2C12 myoblasts. In the present study, it was investigated how Lf promotes myoblast proliferation and whether Lf promotes myoblast differentiation or induces myotube hypertrophy. Lf promoted the proliferation of myoblasts in a dose‑dependent manner. Myoblast proliferation increased on day 3 when myobl...

متن کامل

Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation.

Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-me...

متن کامل

Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation

Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch dur...

متن کامل

The lymphocyte secretome from young adults enhances skeletal muscle proliferation and migration, but effects are attenuated in the secretome of older adults

Older people experience skeletal muscle wasting, in part due to impaired proliferative capacity of quiescent skeletal muscle satellite cells which can be reversed by exposure to young blood. To investigate the role of immune cells in muscle regeneration, we isolated lymphocytes from whole blood of young and older healthy volunteers and cultured them with, or without, anti-CD3/CD28 activators to...

متن کامل

Type 1 Interferons Inhibit Myotube Formation Independently of Upregulation of Interferon-Stimulated Gene 15

INTRODUCTION Type 1 interferon (IFN)-inducible genes and their inducible products are upregulated in dermatomyositis muscle. Of these, IFN-stimulated gene 15 (ISG15) is one of the most upregulated, suggesting its possible involvement in the pathogenesis of this disease. To test this postulate, we developed a model of type 1 IFN mediated myotube toxicity and assessed whether or not downregulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 109 3  شماره 

صفحات  -

تاریخ انتشار 2010